--T'----'_
=t
Sy
"

WAVECREST Corporation

PROGRAMMING THE WAV ECREST DTS 2070
IN “C” AND “PAScAL”

Application Note No. 113

WAVECREST Corporation continually engages in research related to
product improvement. New material, production methods, and design
refinements are introduced into existing products without notice as a
routine expression of that philosophy. For this reason, any current
WAVECREST product may differ in some respect from its published
description but will always equal or exceed the original design
specifications unless otherwise stated.

Copyright 1993

WAVECREST Corporation
A Technologies Company
7275 Bush Lake Road
Edina, Minnesota 55439
(612) 831-0030
(800) 733-7128
WWW.wavecrestcorp.com

All Rights Reserved

WAVE TECHNOLOGIES APPLICATIONS NOTE NUMBER 113

PROGRAMMING THE WAVE DTS2010 IN "C" and "PASCAL"

June 15, 1993

Introduction

GPIB/IEEE-488.2 standard

GPIB program

Instrument Commands

The WAVE Digital Time Scope DTS2010 is capable of making very fast, accurate
time measurements and can be an excellent instrument for the automated
measurement environment used for Integrated circuit(IC) testing.

Most automated applications using the WAVE DTS involve programming
software to drive the instrument on the GPIB BUS. The GPIB commands are
similar for most instruments, but the main difficulty lies in programming
languages. Whether the computer is an IBM-486 based PC, SUN/SPARC, or
HP/APOLLO workstations; the programming language is usually never the same.

Each computer will have its own primative software drivers that drive the GPIB
bus and most of the drivers are either custom or generic (like National Instruments
NI-488) with different software languages.

Furthermore to complicate the software language issue; many of the instruments
IEEE488 user manuals will have software examples in some other language.
Thus the customer is expected to do translations while writing code.

This applications note describes some of the GPIB code necessary in
programming the DTS in "C" or "PASCAL" and compares different data types,
formats, and the ASCII serial command streams for talk and listen.

The GPIB/IEEE-488.2 standard has a common set of commands that define
protocol, status reporting, error handling, and data formats. The DTS2010
instrument conforms to the standards of IEEE-488.1 and IEEE-488.2 and will
interface to computers and controllers that comply to these standards.

Every GPIB program has code to initialize and setup the instrument, serial poll
the BUS, and execute the measurements. The code will have "C" functions or
"PASCAL" procedures that are declared in *.h or *.ins.pas, *.ins.test INCLUDE
files. The data stream sent to the DTS must be converted into strings and the
strings received from the DTS must be converted to data of the proper type,
whether it be integer, real, or character strings.

Once the data is converted, it will be used in some calculations, loops, and
decisions made based on the results. In this application, the various elements of
the software language will be explored.

All serial streams are converted to ASCII strings in "C" or "PASCAL" and sent to
the instrument via the GPIB BUS. For most applications, the recommended
command sequence for initialization of the DTS and setup parameters to execute
a time measurement are as follows :

INITIALIZE DTS2010 COMMANDS

*CLS (Clear the Status command clears the status registers)
:SYST:HEAD OFF (No header or code characters to Controller)
:SYST:LONG OFF (Abbreviated mnemonic is the first four characters)

*ESR? (Query to read the event status register)

'PRAMETERS SETUP OF DTS2010 COMMANDS
‘TRIG:SOURAUTSTOP (Set trigger source to automatic and auto arm on stop channel)

:ACQ:COUNO000100 (Set sample size to 100 counts)
:SYST:CHANBOTH (Set channel to measure both or start channel to stop channel)
:ACQ:FUNCTPD++ (Set function to TPD++ or both channels edges rising to rising)

:SYST:TERMSTAR-2.0000 (Set start channel termination to -2.000vdc ECL)
:SYST:TERMSTOPO0.0000 (Set stop channel termination to 0.000vdc TTL)
:CHANSTAR:LEV-1.0000 (Set start channel 1 edge level to -1.000vdc)
:CHANSTOP:LEV1.0000 (Set stop channel 2 edge level to +1.000vdc)

BURST MEASUREMENT OF DTS2010 COMMANDS

‘TER? (Query to read the status event register, 10 = complete)
*TRG (Trigger command to initiate a measurement)

‘TER? (Query to read the event register, 10 = complete)
:MEAS:AVER? (Read average measurement)

In this application a wide range of GPIB software commands
are used and described in this paper.

Declarations of variables
In "C" all voltage parameters, whether termination or edge level voltage are type
real and declared as double. All burst measurements, whether AVERage, SDEV,
JITTer, RANGe, MINimum, MAXimum are floating point and declared as double.

double voltagel, voltage2;
double averagel, jitter1,;

In "PASCAL" all voltage parameters are type real and declared as real. All burst
measurements are exponential and declared as double.

averagel, jitterl : double;
voltagel, voltage2 : real;

Data type modifiers
In "C" all sample sizes are type integer using the type modifier long and declared
as long.

long no_of_samples;
In "PASCAL" all samples sizes are type integer and declared integer32.

no_of_samples : integer32;

High level talk functions
The structure of programming DTS commands of high level functions that pass
GPIB address information and instrument commands to low level functions or
primatives is shown below. The high level function call can be the same in "C" or
"PASCAL".

talk_488(adr, " :TRIG:SOURAUTSTOP");

All programming commands will use the function talk_488 to send commands to
the BUS and receive a status report response that the command is complete.

Low level talk functions
The low level functions or primatives are routines that do all the coding and
monitoring of status report responses. They convert the DTS commands to
strings, perform queries on the BUS, and timeout if interrupted or the commands
are not properly terminated. The low level functions are transparent to the high
level function and some of the GPIB drivers provide these low level functions as
part of the software.

An example of a "C" low level function talk_488 to the NI-488 driver is shown below:

int talk_488(adr,command)
int *adr;
char *command;

ibwrt(adr, command, (long) strlen(command));
if (ibsta < 0) return(-1);
else

return(0);

}

As you can see, low level functions are cryptic and depending on the specific
GPIB driver; some functions will actually write to board numbers and registers.
Basically in the example, ibwrt writes the address and string using the function
strlen to the BUS. Strlen is a special function that returns the length in characters
of a string called command.

In "PASCAL" converting the command to a string involves putting the command
into a data structure type of an array called data.

procedure talk_488 (IN adr : integer; IN command : string_130;)
var
strg_len : integer;
adrl, x, y : integer;
command, data : string_130;
begin
adrl := adr;
strg_len := 255;

while command]strg_len] ="'’ do strg_len := strg_len - 1;
X :=strg_len;
strg_len :=1;
y:=1
while strg_len <> (x + 2) do
begin
if (command[strg_len} <> ") and (strg_len <> (x+1) then
begin
dataly] := command][strg_len];
y=y+1;
end

else

begin
gpib_wr (adrl, data, y-1);
serial_poll();
error_report();
timeout();
end;
strg_len := strg_len + 1;
end;

end; {talk 488}

High level listen functions

In the "PASCAL" procedure example, gpib_wr writes the address adv1 and command
string indexed variable array data to the DTS, waits for responses that the operation
is complete serial_poll, and monitors the timer.

The high level function for listen_488 is similar to talk_488. All instrument commands
and queries are sent to the BUS in order to receive a response message from the
DTS. The syntax of a query is identical to a command except the query is always
followed by a question mark(?) character.

The example below issues a talk_488 command for measurement (*TRG) and the
function listen_488 for the response measurement average data(:MEAS:AVER?)
returned from the DTS. The high level function call can be the same in "C" or "PASCAL ".

talk_488(adr, " :TER?, *TRG, :TER?");
listen_488(adr," :MEAS:AVER?", &averagel);
listen_488(adr," :MEAS:JITT?", &jitterl");

Low level listen functions

The jitter measurements(:MEAS:JITT?) are essential to show integrity of the signal
path and should be included with every parameter. A high jitter measurement
parameter can indicate a problem with contact resistance or a noisy ground connection.

The low level functions or primitives are routines that do all the coding of commands,
monitoring of status, and obtain the responses or measurement data from the DTS.

An example of a "C" device trigger and response low level function listen_488 to the
NI-488 driver is shown below :

int listen_488(adr,command, double_response)

int *adr;
char *command;

double *double_response;

{

float temp_double;
char *tmp_str;
char scratch[20];

request_and_obtain_asc(adr, command, scratch);
if ((tmp_str = (char *)strstr (scratch , "+")) !=null)

{

sscanf (tmp_str, "+%f", &emp_double);

}

else

if ((tmp_str = (char *)strstr (scratch , "-")) '=null)

sscanf (tmp_str, "-%f", &emp_double);
temp_double = -temp_double;
}
else
sscanf (tmp_str, "%f", &emp_double);
*double_response = temp_double;
return(0);

}

Once again, low level functions are cryptic and depend on the specific GPIB
driver provide by the vendor. Basically in the example, request_and_obtain_asc
sends an ibwrt, which writes the address and command string to the BUS. The
function also does a ibrd, that reads the DTS response string. The strstr is a
special function that matches the first occurrence of the string and returns a null
pointer if no match was found for the polarity sign. sscanf receives a string and
converts it to a floating point number and double precision double_response is
returned.

In "PASCAL" converting the command to a string involves putting the command
into an array.

procedure listen_488 (IN adr : integer; IN command : string_130; OUT message : string_30);
var
strg_len, mess_len : integer;
adrl, x, y : integer;
command, message : string_130;

begin
adrl := adr;
strg_len := 255;

while command[strg_len] =’ do strg_len := strg_len - 1,
talk_488(adrl, command, strg_len);
gpib_rd(adrl, message, mess_len);
writeln(’ returned message string’, message:mess_len);
serial_poll();
error_report();
timeout();
end;

average?2 := strn_to_real (averagel)

In the "PASCAL" procedure example, gpib_wr writes the address adv1 and
command string(:MEAS:AVER?) to the DTS, then performs a querie and waits for
a response(&averagel).

Once the string is received, it must be converted to a real using the function
strn_to_real (); which parses through a string and determines polarity,
exponential (e) sign, digits and converts to a real number.

Termination characters
All serial stream data transfers must be null-terminated by a GPIB EOI or the NL
character. The character for a NL (newline) is a ASCII OA (hex). and EOI (end or
identify) is a hardware line. The parser automatically detects the character and
terminates the data transfer.

Serial polling
init_488 function passes serial polling commands that can be performed at setup
to accomplish status reporting. This is to assure operations are complete and
there are no errors.

The high level function call can be the same in "C" or "PASCAL ".
init_488(adr, " *ESE 125,*SRE 48, *ESR?");

The event status (ESE) and service request enable (SRE) commands set up masking
to obtain status information. Included in the function is exchange protocol to query
the event status register (ESR?).

In the example below, opc_poll_queue (); is a low level "C" function that performs a
query and reports on the event status. The polling status monitors the event status
until the operation is complete.

int opc_poll_queue() {
int poll_status;
while (!(poll_status & 0x 41))

if (poll_the_dts(&poll_status))
return(-1);
time_out();
}
return(0);
}
In the "PASCAL" example below, the procedure serial_poll(); checks the DTS for
operation complete(OPC), and no errors.

procedure serial_poll(IN adr : integer; OUT error : boolean);
var

poll_status : char;
begin

gpib_poll(adr, poll_status);
if ((ORD(poll_status)& 16#0041) = 16#0041 then
wave_ready = true;
if wave_ready then

error := true
else
error := false;

end;

Conclusions
The IEEE 488.2 standard simplifies the programming software necessary to drive the
DTS instrument and perform measurements. The structure of programming is broken
into high level calls for talk and listen. With the use of high level functions, the serial
stream of commands are easily programmed in any of the languages of "C" or "PASCAL".

In the low level functions resides the routines that do the code for converting the
commands to strings, monitoring the report status, and performing queries on response
information. Many of the low level functions are provided by the vender and can be part
of the GPIB driver.

All of the examples can be used with the WAVE Digital Time Scope DTS2010 to
integrate with any powerful computer or workstation for test and measurement of
integrated circuits (I1C).

References

Microsoft Corp., Microsoft C Compiler for the MS-DOS Operating System Run-time Library
reference manual, 1987.

National Instruments Corp., LabWindows User Interface Library Reference Manual, 1991.

Herbert Schildt, ANSI C Made Easy, Osborne Mcgraw-Hill, Berkeley,Ca.; 1990.

Wave Technologies Corp., Applications Note No. 110; Verifing ATE System Accuracy, June,1993.
Operators Guide, Digital Time Scope, Wave Technologies Corporation, Edina, Mn.

IEEE-488 Interface Guide, Digital Time Scope, Wave Technologies Corporation, Edina, Mn.

George W. Cherry, Pascal Programming Structures, Reston Publishing Co., Reston,Va.;1980.

WAVECREST Corporation
World Headquarters

7275 Bush Lake Road

Edina, MN 55439

(612) 831-0030

FAX: (612) 831-4474

Toll Free: 1-800-733-7128
WWW.Wavecrestcorp.com

WAVECREST Corporation
West Coast Office:

1735 Technology Drive, Suite 400
San Jose, CA 95110

(408) 436-9000

FAX: (408) 436-9001
1-800-821-2272

200113-01 REV A

	June 15, 1993
	High level listen functions

	copyrt93.pdf
	Edina, Minnesota 55439

	cover113.pdf
	Application Note No. 113

